解题思路:(1)由相似三角形的判定得出△DEB∽△ACB,从而得出角的关系,再由AD=CD,得出BD与AB的关系,即可求的结论.
(2)此题分两种情况求解,△BME∽△CNE或△BME∽△ENC,根据相似三角形的性质即可求得.
(1)证明:∵AD=CD,
∴∠DAC=∠DCA,
∴∠BDC=2∠DAC,
∵DE是∠BDC的平分线,
∴∠BDC=2∠BDE,
∴∠DAC=∠BDE,
∴DE∥AC,
(2)(I)当△BME∽△CNE时,得∠MBE=∠NCE,
∴BD=DC,
∵DE平分∠BDC,
∴DE⊥BC,BE=EC,
又∠ACB=90°,
∴DE∥AC,
∴[BE/BC=
BD
AB]即BD=[1/2]AB=
1
2
AC2+BC2=5,
∴AD=5,
(II)当△BME∽△ENC时,得∠EBM=∠CEN,
∴EN∥BD,
∵EN⊥CD,
∴BD⊥CD即CD是△ABC斜边上的高,
由三角形面积公式得AB•CD=AC•BC,
∴CD=[24/5],
∴AD=
AC2-CD2=
18
5,
综上,当AD=5或 [18/5]时,△BME与△CNE相似.
点评:
本题考点: 相似三角形的判定与性质;角平分线的性质;勾股定理.
考点点评: 此题考查了相似三角形的判定与性质、角平分线的性质和勾股定理,解题时要注意数形结合思想的应用,要注意不规则图形的面积的求解方法.