(1)|OA|=|λ|=-λ,|OB|=1
设OA与OB的夹角为θ
cosθ=OA·OB/(|OA|·|OB|)
=(λsinαcosβ+λcosαsinβ)/(-λ)
=-sin(α+β)
=-sin5π/6
=-1/2
θ=2π/3
(2)
向量AB=OB-OA
|AB|²=(AB)²
=λ²sin²α-2λsinαcosβ+cos²β+λ²cos²α-2λcosαsinβ+sin²β
=λ²+1-2λsin(α+β)
=λ²+1-λ
=(λ-1/2)²+3/4
λ属于[-2,2],|AB|²属于[1,7]
|AB|属于[1,√7]
不懂问我