若cos(∏/6 -α)=1/3,求cos(5∏/6+α)sin(2∏/3 -α)的值
1个回答

cos(π/6 -α)=1/3

cosπ/6cosα+sinπ/6sinα=1/3

根号3/2cosα+1/2sinα=1/3

两边平方得:

3/4cos^2α+1/4sin^2α+根号3/2sinαcosα=1/9

1/4(cos^2α+1/4sin^2α) + 1/2cos^2α +根号3/4 sin2α = 1/9

1/4(cos^2α+1/4sin^2α) + 1/2cos^2α +根号3/4 sin2α = 1/9

1/4 + 1/2 *1/2 (1+cos2α) + 根号3/4 sin2α = 1/9

cos2α + 根号3sin2α = -14/9

cos(5π/6+α)sin(2π/3 -α)

=1/2 { sin[5π/6+α+2π/3 -α] - sin[5π/6+α-2π/3 +α] }

=1/2 { sin[3π/2 ] - sin[π/6+2α] }

=1/2 { -1 - sin[π/6+2α] }

=-1/2 - 1/2 sin[π/6+2α]

=-1/2 - 1/2 sinπ/6cos2α -1/2 cosπ/6sin2α

=-1/2 - 1/4 cos2α -根号3/4sin2α

=-1/2-1/4(cos2α+根号3sin2α)

=-1/2-1/4*(-14/9)

=-1/9