1.三角形ABC中,sinA^2+sinB^2=6sinC^2,则(1/tanA+1/tanB)tanC=?
1个回答

1.

(1/tanB+1/tanA)*tanC

=tanC*(tanB+tanA)/(tanBtanA)

=tanC*(sinBcosA+sinAcosB)/(sinBsinA)

[分子分母同时乘以cosBcosA]

=sinC*sin(B+A)/(sinBsinAcosC)

=(sinC)^2/(sinBsinAcosC) [B+C=180度-A]

所以

(1/tanB+1/tanA)*tanC

=c^2/(ab*cosC)[由正弦定理可得].1式

6sinC^2=sinB^2+sinA^2可由正弦定理推出,6C^2=b^2+a^2 .2式

再根据余弦定理,

c^2=b^2+a^2-2ab*cosC .3式

将2式代入3式,

得5c^2=2ab*cosC

c^2=2/5ab*cosC .4式

最后将4式代入1式,

(1/tanB+1/tanA)*tanC

=c^2/(ab*cosC)

=(2/5ab*cosC)/(ab*cosC)

=2/5

2.

sinα+cosα=a

sinα*cosα=a

(sinα+cosα)^2=a^2

sin^2α+2sinα*cosα+cos^2α=a^2

1+2a=a^2

a^2-2a-1=0

a^2-2a+1-1-1=0

(a-1)^2-2=0

(a-1-√2)(a-1+√2)=0

a=1-√2 或 a=1+√2(舍去,)

所以:a=1-√2

sinα^3+cosα^3

=(sinα+cosα)(sin^2α-sinα*cosα+cos^2α)

=(sinα+cosα)(1-sinα*cosα)

=a(1-a)

=a-a^2

=1-√2-(1-√2)^2

=1-√2-3+2√2

=√2-2