已知:如图,三角形ABC中,外角∠DBC与∠ECB的角平分线相交于点O,(1)∠A为64°,求∠BOC的度数
1个回答

∵∠A+∠ABC+∠ACB=180

∴∠ABC+∠ACB=180-∠A

∵∠CBE=180-∠ABC,BO平分∠DBC

∴∠CBO=∠DBC/2=(180-∠ABC)/2=90-∠ABC/2

∵∠ECB=180-∠ACB,CO平分∠ECB

∴∠BCO=∠ECB/2=(180-∠ACB)/2=90-∠ABC/2

∴∠BOC=180-(∠CBO+∠BCO)

=180-(90-∠ABC/2+90-∠ACB/2)

=∠ABC/2+∠ACB/2

=(∠ABC+∠ACB)/2

=(180-∠A)/2

=90-∠A/2

∴1)

∠A=64,∠BOC=90-64/2=58

2)

∠A=X,∠BOC=90-X/2