求y=cos(x+根号x)的2阶导数.
3个回答

y是一个复合函数.

设:f(x)=x+√x

代入所给函数,有:y=cos[f(x)]

f'(x)=1-1/√x=1-x^(-1/2)=(x-√x)/x

f''(x)=(1/2)x^(3/2)=(1/2)√(x^3)

y'={-sin[f(x)]}×f'(x)

y''={-sin[f(x)]}'×f'(x)+{-sin[f(x)]}×f''(x)

={-cos[f(x)]}×[(x-√x)/x]-{sin[f(x)]}×[(1/2)√(x^3)]

=-[(x-√x)/x]×cos(x+√x)-[(1/2)√(x^3)]×sin(x+√x)