设数列{an}的前几项和为Sn,满足2Sn=an+1-2^n+1+1,且a1,a2+5.a3成等差数列 (1)求a1的值
1个回答

1.

n=1时,

2S1=2a1=a2-2^2 +1

a2=2a1+3

n=2时,

2S2=2(a1+a2)=a3-2^3 +1

a3=2(a1+a2)+7=2(a1+2a1+3)+7=6a1+13

a1,a2+5,a3成等差数列,则

2(a2+5)=a1+a3

2(2a1+3+5)=a1+6a1+13

整理,得

3a1=3

a1=1

2.

n≥2时,

2an=2Sn-2S(n-1)=a(n+1)-2^(n+1)+1-(an-2^n +1)

a(n+1)=3an+2^n

a(n+1)+2^(n+1)=3an+3×2^n=3×(an+2^n)

[a(n+1)+2^(n+1)]/(an +2^n)=3,为定值

a1+2=1+2=3,数列{an +2^n}是以3为首项,3为公比的等比数列

an+2^n=3×3^(n-1)=3^n

an=3^n -2^n

数列{an}的通项公式为an=3^n -2^n

3.

3>2>1,3^n>2^n,an恒>0

[1/a(n+1)]/(1/an)

=an/a(n+1)

=(3^n -2^n)/[3^(n+1)-2^(n+1)]

=(1/3)[3^(n+1)-3×2^n]/[3^(n+1)-2^(n+1)]

=(1/3)[3^(n+1)-2^(n+1)-2^n]/[3^(n+1)-2^(n+1)]

=1/3 - (1/3)×2^n/[3^(n+1)-2^(n+1)]

(1/3)×2^n/[3^(n+1)-2^(n+1)]>0

1/3 -(1/3)×2^n/[3^(n+1)-2^(n+1)]