求不定积分∫∫dx/[x^2√(1+x^2)∫(x^3-6x+8)dx/(x-2)∫dx/√(x^2+6x-16)3Q
1个回答

【1】∫dx/[x²√(1+x²)],令x=tanλ,dx=sec²λ

=∫sec²λ/[tan²λ√(1+tan²λ)]dλ

=∫sec²λ/(tan²λsecλ)dλ

=∫cotλcscλdλ

=-cscλ+C

=-(1/x)[√(x²+1)]+C

【2】∫(x³-6x+8)dx/(x-2)

=∫[(x³-8+16)/(x-2)-6x/(x-2)]dx

=∫[(x-2)(x²+2x+4)]dx/(x-2)+16∫dx/(x-2)-6[∫dx+2∫dx/(x-2)]

=∫(x²+2x+4)dx+16∫dx/(x-2)-6∫dx-12∫dx/(x-2)

=∫x²dx+2∫xdx-2∫dx+4∫dx/(x-2)

=(1/3)x³+x²-2x+4ln|x-2|+C

【3】∫dx/√(x²+6x-16)

=∫dx/√(x²+6x+9-25)

=∫dx/√[(x+3)²-25],令s=5secu,ds=5tanusecudu

=∫5tanusecudu/√(25sec²u-25)

=∫5tanusecudu/5tanu

=∫secudu

=ln|tanu+secu|+C

=ln|√(s²-5²)/5+s/5|+C

=ln|√[(x+3)²-25]/5+(x+3)/5|+C

=ln|(1/5)[√(x²+6x-16)+x+3]|+C