已知x>-1,则函数y=x+[1/x+1]的最小值为(  )
2个回答

解题思路:y=x+[1/x+1]=x+1+[1/x+1]-1,利用基本不等式求最值.

y=x+[1/x+1]=x+1+[1/x+1]-1≥2

(x+1)•

1

x+1-1=2-1=1(当且仅当x+1=[1/x+1],即x=0时,等号成立).

故选:C.

点评:

本题考点: 基本不等式在最值问题中的应用.

考点点评: 本题由题意首先化简为y=x+1+[1/x+1]-1的形式,再出基本不等式求解,属于基础题.