三角形ABC中,bcosC=ccosB,若tanA=-2倍根号2,求sin(4B+π/3)的值
1个回答

跟据正弦定理,

b/sinB = c/sinC

得:b/c = sinB/sinC

已知:bcosC=ccosB

得:b/c = cosB/cosC

两式相等,得:sinB/sinC = cosB/cosC

sinBcosC = cosBsinC

sinBcosC - cosBsinC = 0

sin(B - C) = 0

所以B - C = 0 (A,B,C不超於180度)

得B = C

且A + B + C = 180°

所以A + B + B = 180°

A = 180° - 2B

代入tanA = -2√2

tan(180° - 2B) = -2√2

-tan2B = -2√2

tan2B = 2√2

利用万能公式,

得:sin4B = 2tan2B/(1 + tan²2B)

= 2 * 2√2/[1 + (-2√2)²]

= 4√2/9

cos4B = (1 - tan²2B)/(1 + tan²2B)

= [1 - (2√2)²]/[1 + (2√2)²]

= -7/9

所求:sin(4B + π/3)

= sin4Bcosπ/3 + cos4Bsinπ/3

= (4√2/9)*(1/2) + (-7/9)/(√3/2)

= (4√2 - 7√3)/18