设数列{a n }为等比数列, a 1 = C 2m+3 3m A m-2 1 ,公比q是 (x+ 1 4 x 2 )
1个回答

(1)由a 1=

C 3m2m+3 •

A 1m-2 得

2m+3≥3m

m-2≥1 ⇔

m≤3

m≥3 ,

∴m=3,

(2)a 1=

C 99 •

A 11 =1.

又 (x+

1

4 x 2 ) 4 展开式中第2项T 2=

C 14 •x 3•(

1

4x 2 )=x,即公比为x,

∴a n=x n-1

∴S n=

n,x=1

1 -x n

1-x ,x≠1 ;

(2)由S n表达式引发讨论:

(Ⅰ)当x=1时,S n=n,此时A n=

C 1n +2

C 2n +3

C 3n +…+n

C nn ,①

又A n=n

C 0n +(n-1)

C 1n +…+1•

C n-1n ②

∴①+②得2A n=n(

C 0n +

C 1n +…+

C nn )=n•2 n

∴A n=n•2 n-1

(Ⅱ)当x≠1时,S n=

1 -x n

1-x ,此时A n=

1-x

1-x

C 1n +

1 -x 2

1-x

C 2n +…+

1 -x n

1-x

C nn

=

1

1-x [(

C 1n +

C 2n +…+

C nn )-(x

C 1n +x 2

C 2n +x 3

C 3n +…+x n

C nn )]

=

1

1-x {(2 n-1)-[(1+x) n-1]}

=

1

1-x [2 n-(1+x) n].