将AB点坐标代入直线解析式,列方程.
0=2k+b
4=0x+b,
求出k=-2,b=4,则解析式为y=-2x+4.
D在直线AB上,D坐标符合直线解析式,则xD=1,求其纵坐标为yD=2,m=2.
2÷2=1,则C点坐标为(1,0).设P点坐标为(0,p),
设E点为C点相对于y轴的对称点,则E点坐标为(-1,0).
连接DE,与y轴相交于F点.
因为FE=FC,所以FC+FD=FE+FD=ED.
在△EDP中,PC+PD≥ED,则PC+PD的值最小为ED,此时P点与F点重合.
直线ED方程为(y-0)/(2-0)=(x+1)/[1-(-1)],x=0代入方程,求得ED与y轴交点p=1,P点为(0,1)