如图8所示,直线y=kx+b与x,y轴分别交于点A(2,0)B(0,4).(1)求此直线解析式;(2)若点D(1,m)在
2个回答

将AB点坐标代入直线解析式,列方程.

0=2k+b

4=0x+b,

求出k=-2,b=4,则解析式为y=-2x+4.

D在直线AB上,D坐标符合直线解析式,则xD=1,求其纵坐标为yD=2,m=2.

2÷2=1,则C点坐标为(1,0).设P点坐标为(0,p),

设E点为C点相对于y轴的对称点,则E点坐标为(-1,0).

连接DE,与y轴相交于F点.

因为FE=FC,所以FC+FD=FE+FD=ED.

在△EDP中,PC+PD≥ED,则PC+PD的值最小为ED,此时P点与F点重合.

直线ED方程为(y-0)/(2-0)=(x+1)/[1-(-1)],x=0代入方程,求得ED与y轴交点p=1,P点为(0,1)