已知数列{an}的前n项和Sn=3^n-1,数列{bn}满足b1=1,bn=3b(n-1)+an(n≥2),记数列{bn
1个回答

Sn=3^n -1

(1)n=1时,

a1=S1=3^1-1=2

n≥2时,

an=Sn-S(n-1)=3^n-1-[3^(n-1)-1]=2*3^(n-1)

n=1也满足上式

∴ an=2*3^(n-1)

∴ a(n+1)/an=3,

∴ {an}是等比数列;

(2)bn=3b(n-1)+an(n≥2)

∴ bn=3b(n-1)+2*3^(n-1) (n≥2)

两边同时除以3^n

∴ bn/3^n=b(n-1)/3^(n-1)+2/3

∴ {bn/3^n}是等差数列,首项是b1/3=1/3,公差是2/3

∴ bn/3^n=1/3+(2/3)(n-1)=(2n-1)/3

∴ bn=(2n-1)*3^(n-1)

利用错位相减求和

∴ Tn=1*1+3*3+5*3²+.+(2n-3)*3^(n-2)+(2n-1)*3^(n-1)

3Tn= 1*3+3*3²+.+(2n-3)*3^(n-1)+(2n-1)*3^n

两式子相减

-2Tn =1+2[3+3²+.3^(n-1)]-(2n-1)*3^n

-2Tn=1+2(3-3^n)/(1-3)-(2n-1)*3^n

-2Tn=1+3^n-3-(2n-1)*3^n=-2-(2n-2)*3^n

∴ Tn=1+(n-1)*3^n