设函数f(x)=2cos平方x+根号3sin2x求函数△ABC的最小正周期.单调递增区间,当x∈【0,3分之π】f(x)
1个回答

f(x)=2cos²x+√3sin2x

=(2cos²x-1)+1+√3sin2x

=cos2x+√3sin2x+1

=2sin(2x+π/6)+1

函数f(x)最小正周期T=2π/2=π

由2kπ≤2x+π/6≤2kπ+π/2 (k∈z),得

kπ-π/12≤x≤kπ+π/6

或 由2kπ+3π/2≤2x+π/6≤2kπ+2π(k∈z),得

kπ+2π/3≤x≤kπ+11π/12

因此,f(x)的单独递增区间为[kπ-π/12,kπ+π/6]或[kπ+2π/3,kπ+11π/12] (k∈z)

(3)因为函数在区间[0,π/3]上

所以π/6≤2x+π/6≤5π/6

当2x+π/6=π/2,即x=π/6时

函数最大值=3

当2x+π/6=π/6,即x=0时

函数最小值=-1