数列{a n }中,a 1 =a,a n+1 =ca n +1-c(n∈N * )a、c∈R,c≠0
1个回答

(1)证明:∵a n+1=ca n+1-c,∴a n+1-1=c(a n-1)

∴a≠1时,{a n-1}等比数列.

∵a 1-1=a-1,∴ a n-1 =(a-1) c n-1 ,∴ a n =(a-1) c n-1 +1

(2)由(1)可得 a n =-

1

2 (

1

2 ) n-1 +1=-(

1

2 ) n +1

∴ b n =n• (

1

2 ) n

∴S n= 1•

1

2 +2•(

1

2 ) 2 +…+n•(

1

2 ) n

1

2 S n= 1•(

1

2 ) 2 +2• (

1

2 ) 3 +…+(n-1)•(

1

2 ) n +n• (

1

2 ) n+1

两式相减可得

1

2 S n=

1

2 + (

1

2 ) 2 + (

1

2 ) 3 +…+ (

1

2 ) n -n• (

1

2 ) n+1 =1-

n+2

2 n+1

∴ S n =2-

n+2

2 n

(3)证明: C n =4+

5

(-4) n -1 ,

d n =

25× 16 n

( 16 n -1)( 16 n +4) =

25× 16 n

( 16 n ) 2 +3× 16 n -4 <

25× 16 n

( 16 n ) 2 <

25

16 n

∴ T n = d 1 + d 2 +…+ d n <25(

1

16 +

1

16 2 +

1

16 3 +…+

1

16 n )=

25×

1

16 (1- (

1

16 ) n )

1-

1

16 =

5

3 (1-

1

16 n )<

5

3