设数列{a n } 的前n项和为S n ,已知S 1 =1, S n+1 S n = n+c n (c为常数,c≠1,n
1个回答

(1)∵S 1=1,

S n+1

S n =

n+c

n ,

∴a n+1=S n+1-S n=

c

n S n ,-------------------------(2分)

∴a 1=S 1=1,a 2=cS 1=c,a 3=

c

2 S 2 =

c

2 (1+c) .

∵a 1,a 2,a 3成等差数列,

∴2a 2=a 1+a 3

即2c=1+

c(1+c)

2 ,

∴c 2-3c+2=0.---------------------------------------------------(5分)

解得c=2,或c=1(舍去).-----------------------------------------------------------------(6分)

(2)∵)∵S 1=1,

S n+1

S n =

n+2

n ,

∴S n=S 1×

S 2

S 1 ×…×

S n

S n-1 =1×

3

1 ×

4

2 ×…×

n+1

n-1 =

n(1+n)

2 (n≥2),-------------------(8分)

∴a n=S n-S n-1=

n(1+n)

2 -

n(n-1)

2 =n(n≥2),------------------------------------------(9分)

又a 1=1,∴数列{a n}的通项公式是a n=n(n∈N *).-----------------------------------(10分)

(3)证明:∵数列{b n}是首项为1,公比为c的等比数列,

∴b n=c n-1.---------(11分)

∵A 2n=a 1b 1+a 2b 2+…+a 2nb 2n,B 2n=a 1b 1-a 2b 2+…-a 2nb 2n

∴A 2n+B 2n=2(a 1b 1+a 3b 3+…+a 2n-1b 2n-1),①

A 2n-B 2n=2(a 2b 2+a 4b 4+…+a 2nb 2n),②

①式两边乘以c得 c(A 2n+B 2n)=2(a 1b 2+a 3b 4+…+a 2n-1b 2n)③

由②③得(1-c)A 2n-(1+c)B 2n=A 2n-B 2n-c(A 2n+B 2n

=2[(a 2-a 1)b 2+(a 4-a 3)b 4+…+(a 2n-a 2n-1)b 2n]

=2(c+c 3+…+c 2n-1

=

2c(1- c 2n )

1- c 2 ,

将c=2代入上式,得A 2n+3B 2n=

4

3 (1-4 n).-----------------------------------------(14分)

另证:先用错位相减法求A n,B n,再验证A 2n+3B 2n=

4

3 (1-4 n).

∵数列{b n}是首项为1,公比为c=2的等比数列,∴ b n = 2 n-1 .--------------(11分)

又是a n=n(n∈N *),所以A 2n=1×2 0+2×2 1+…+2n×2 2n-1

B 2n=1×2 0-2×2 1+…-2n×2 2n-1

将①乘以2得:

2A 2n=1×2 1+2×2 2+…+2n×2 2n

①-③得:-A 2n=2 0+2 1+…+2 2n-1-2n×2 2n=

1(1- 2 2n )

1-2 -2n×2 2n

整理得:A 2n=4 n(2n-1)+1-------------------------(12分)

将②乘以-2得:-2B 2n=-1×2 1+2×2 2-…+2n×2 2n

②-④整理得:3B 2n=2 0-2 1+…+2 2n-1-2n×2 2n=

1(1- 2 2n )

1-(-2) -2n×2 2n=

1 -4 n

3 -2n×4 n,(13分)

∴A 2n+3B 2n=

4

3 (1-4 n)-----------------------------------------(14分)