已知数列{a n }的前n项和为S n ,且S n =n(n+1)(n∈N * ).
1个回答

(Ⅰ)当n=1时,a 1=S 1=2,

当n≥2时,a n=S n-S n-1=n(n+1)-(n-1)n=2n,

知a 1=2满足该式,

∴数列{a n}的通项公式为a n=2n.(2分)

(Ⅱ)∵ a n =

b 1

3+1 +

b 2

3 2 +1 +

b 3

3 3 +1 +…+

b n

3 n +1 (n≥1)①

∴ a n+1 =

b 1

3+1 +

b 2

3 2 +1 +

b 3

3 3 +1 +…+

b n

3 n +1 +

b n+1

3 n+1 +1 ②(4分)

②-①得:

b n+1

3 n+1 +1 = a n+1 - a n =2 ,

b n+1=2(3 n+1+1),

故b n=2(3 n+1)(n∈N *).(6分)

(Ⅲ) c n =

a n b n

4 =n(3 n+1)=n•3 n+n,

∴T n=c 1+c 2+c 3+…+c n=(1×3+2×3 2+3×3 3+…+n×3 n)+(1+2+…+n)(8分)

令H n=1×3+2×3 2+3×3 3+…+n×3 n,①

则3H n=1×3 2+2×3 3+3×3 4+…+n×3 n+1

①-②得:-2H n=3+3 2+3 3+…+3 n-n×3 n+1
=

3(1- 3 n )

1-3 -n× 3 n+1

∴ H n =

(2n-1)× 3 n+1 +3

4 ,…(10分)

∴数列{c n}的前n项和 T n =

(2n-1)× 3 n+1 +3

4 +

n(n+1)

2 …(12分)