为输入方便,分子分母分别计算
sin36°+sin15°sin39°
=cos54°+sin15°sin39°
=cos(15°+39°)+sin15°sin39°
=cos15°cos39°-sin15°sin39°+sin15°sin39°
=cos15°cos39°
cos36°-cos15°sin39°
=sin54°-cos15°sin39°
=sin(15°+39°)-cos15°sin39°
=sin15°cos39°+cos15°sin39°-cos15°sin39°
=sin15°cos39°
∴ 原式=cos15°cos39°/(sin15°cos39°)
=cos15°/sin15°
=2cos²15°/(2sin15°cos15°)
=(1+cos30°)/sin30°
=2+2cos30°
=2+√3