已知函数f(x)=2cos2x+cos(2x+π/3)-1
1个回答

1)f(x)=2cos^2x+cos(2x+π/3)-1

=cos2x+cos2xcosπ/3-sin2xsinπ/3

=cos2x+1/2cos2x-√3/2sin2x

=3/2cos2x-√3/2sin2x

=√3(cos2xcosπ/6-sin2xsinπ/6)

=√3cos(2x+π/6)

所以最小值周期T=2π/w=2π/2=π

因为当(2x+π/6)∈(2kπ-π,2kπ)时,f(x)单调递增

此时x∈(kπ-7π/12,kπ-π/12)

所以f(x)单调增区间为(kπ-7π/12,kπ-π/12)(k∈Z)

2)f(a)=√3cos(2a+π/6)=-3/2

则cos(2x+π/6)=-√3/2

即2x+π/6=kπ+5π/6

x=kπ/2+π/3 (k∈Z)

因为a为锐角

所以a=π/3