1) 根据全定义域上总积分=1
k ∫(1~3)∫(0~1) (3x²+xy) dxdy=1
∫(1~3){(x³+x²y/2)|(x:1)}dy=1/k
∫(1~3)(1+y/2)dy=1/k
y+y²/4 |(1~3)=1/k
3+9/4-1-1/4=1/k
4=1/k
k=1/4
2) P=k∫(1~2)∫(0~1/2)(3x²+xy)dxdy
=k∫(1~2){(1+y)/8} dy
=k{(1+y)²/16}|(1~2)
=5k/16
=5/64
3)这里需要把y作全定义域积分
P=k∫(1~3)∫(0~1/2)(3x²+xy)dxdy
=k∫(1~3){(1+y)/8} dy
=(16-4)/64
=12/64
=3/16
4)1