求证!快 sin^2α/(1+cotα)+cos^2α/(1+tanα)=1-sinαcosα
2个回答

1

sin^2α/(1+cotα)+cos^2α/(1+tanα)

=sin^2α·sinα/(sinα+cosα)+cos^2α·cosα/(cosα+sinα)

=(sin^3α+cos^3α)/(sinα+cosα)

=(sinα+cosα)(sin^2α-sinα·cosα+cos^2α)/(sinα+cosα)

=sin^2α-sinα·cosα+cos^2α

=1-sinαcosα

2

tanαsina/(tanα-sina)

=tanαsina/(sinα/cosα-sina)

=(sinα/cosα)/(1/cosα-1)

=sinα/(1-cosα)

=1/tan(α/2);

(tanα+sinα)/tanαsinα

=((sinα/cosα)+sinα)/tanαsinα

=((1/cosα)+1)/tanα

=((1/cosα)+1)·cosα/tanα·cosα

=(1+cosα)/sinα

=1/tan(α/2);

∴左=右;

tanαsina/(tanα-sina)=(tanα+sinα)/tanαsinα

3

(1-sin^4α-cos^4α)/(1-sina^6α-cos^6α)

=[1-(sin^2α+cos^2α)^2+2sin^2α·cos^2α]/[1-(sin^2α+cos^2α)(sin^4α-sin^2α·cos^2α+cos^4α)]

=[1-1+2sin^2α·cos^2α]/[1-1*(sin^4α+2sin^2α·cos^2α+cos^4α-3sin^2α·cos^2α)]

=2sin^2α·cos^2α/[1-(sin^2α+cos^2α)^2+3sin^2α·cos^2α]

=2sin^2α·cos^2α/[1-1+3sin^2α·cos^2α]

=2/3

看看怎么样?