在各项都为正数的等比数列{a n }中,已知a 3 =4,前三项的和为28.
1个回答

(Ⅰ)设公比为q,则有a 3=4,前三项的和为28,

a 1 q 2 =4

a 1 (1- q 3 )

1-q =28 ,

解得 a 1 =16,q=

1

2 ,或 a 1 =36,q=-

1

3 .

∵等比数列{a n}各项都为正数,

∴ a 1 =36,q=-

1

3 不合题意,舍去.

∴ a 1 =16,q=

1

2 ,

a n =16× (

1

2 ) n-1 =32× (

1

2 ) n .

(Ⅱ)∵ a n =32× (

1

2 ) n ,

∴b n=log 2a n= log 2 [32×(

1

2 ) n ] =5-n.

S n=b 1+b 2+…+b n=4+3+2+…+(5-n)

=

n(9-n)

2 .

S n

n =

9-n

2 ,

S 1

1 +

S 2

2 +…+

S n

n =

9-1

2 +

9-2

2 +…+

9-n

2

=

9n

2 -

n(n+1)

2

=-(

1

2 n 2 -4n )

= -

1

2 (n-4 ) 2 +8 .

∴n=4时,

S 1

1 +

S 2

2 +…+

S n

n 取最大值8.