应该说你的叙述很不好,而且略微少了点条件.
假定f具有比两阶略好的光滑性,那么可以这样做
首先将f在x^*处做Taylor展开得
f(x)=f''(x^*)(x-x^*)^2/2+O((x-x^*)^3)
于是g(x^*)=f''(x^*)/2 !=0
令p(x)=x-f(x)/f'(x),q(x)=2p(x)-x (q(x)就是你第二题里面的p(x))
那么p'(x)=f(x)f''(x)/[f'(x)]^2=g(x)f''(x)/[2g(x)+(x-x^*)^2*g'(x)]^2
将x*代入并注意前面2g(x^*)=f''(x^*)即得p'(x^*)=1/2
从而q'(x^*)=2p'(x^*)-1=0