已知函数f(x)满足f(x^2-1)=loga[(x^2-2)/x^2]判断奇偶性,在(1,正无穷)单调性,解f(x)=loga^(1/x)
解析:设t=x^2-1==>x=±√(t+1)
F(t)=log(a,(t-1)/(t+1)) ,其定义域为(-∞,-1)(1,+∞)
F(-t)=log(a,(t+1)/(t-1))=- F(t)
∴f(x)奇函数
F(x)=log(a,(x-1)/(x+1))==> F’(x)=[(x+1)/(x-1)lna]
∵x∈(1,+∞),∴F’(x)>0
∴在区间(1,+∞)上,函数f(x)单调增;
f(x)= log(a,(x-1)/(x+1))=log(a,(1/x))
(x-1)/(x+1)=1/x
解得x1=1-√2,x2=1+√2