请问这个怎么求?sinx的三次方分之一的不定积分
1个回答

∫1/(sinx)^3dx

=∫cscx^3dx

=-∫cscx d (cotx)

=-cscx*cotx-∫(cotx)^2*cscx dx

=-cscx*cotx-∫[(cscx)^2-1]*cscx dx

=-cscx*cotx-∫[(cscx)^3-cscx] dx

=-cscx*cotx-∫(cscx)^3dx+∫cscx dx

=-cscx*cotx-∫(cscx)^3dx+ln|cscx-cotx|

然后将等式右边的-∫(cscx)^3dx移动等式左边与左边合并后将系数除掉,得

∫1/(sinx)^3dx=-(1/2)cscx*cotx+(1/2)ln|cscx-cotx|+C