(1)∵OF是∠BCA的外角平分线,
∴∠OCF=∠FCD,
又∵MN∥BC,
∴∠OFC=∠ECD,
∴∠OFC=∠COF,
∴OF=OC,
∴OE=OF;
∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F
∴∠ECF=90°,
∵CE=12,CF=5,
∴EF=
122+52
=13,
∵CE是∠ACB的角平分线,
∴∠ACE=∠BCE,
又∵MN∥BC,
∴∠NEC=∠ECB,
∴∠NEC=∠ACE,
∴OE=OC,
∴CO是△ECF上的中线,
∴CO=
1
2
EF=6.5;