1.
设△ABC外接圆半径为R
S△ABC=2R*RsinAsinBsinC = 2R*Rsinβsinγsin(β+γ)
∠BAF = ∠CAE = 90 -β
∠EAF= β-γ
AF = 2R*cos(β-γ)
AP = AF*cos(90—β) = AF*sin β =2R cos(β-γ) sin β
AQ = AEsin β =2R cos(β-γ)sin γ
利用你已经证明的结果AE⊥PQ,设AE和PQ相交于G
PG=APsin γ= 2R cos(β-γ)sin βcosγ
QG= 2R cos(β-γ)sin γcosβ
PQ = 2R cos(β-γ)( sin βcosγ +sin γcosβ) = 2Rcos(β-γ)sin (β+γ)
( 如果你对三角公式不熟悉,PQ的值也可以通过△PQF∽△BCE,或是余弦定理得到)
AG = AQcos(90- β) = 2R cos(β-γ) sin βsin γ
EG = 2R-AG = 2R(1- cos(β-γ) sin βsin γ)
S△PQE = AG*PQ/2=2R*R(1- cos(β-γ) sin βsin γ) *cos(β-γ)sin (β+γ)
S△PQE/ S△ABC= [(1- cos(β-γ) sin βsin γ) *cos(β-γ)sin (β+γ) ]/ [sinβsinγsin(β+γ) ]
=1/sinβsinγ - cos(β-γ) *cos(β-γ)
= cotβcotγ+[sin(β-γ)]^2
2.
由已知条件,O,M,A 三线共点
OM*MA =OP*OP=OD*OD
∆ODM ∽∆OAD
∠ODM = ∠OAD (这是证明此题最关键的一步)
设△ABC外接圆圆心为O’,O’,O,D三线共点
∠O’DA= ∠O’AD
∠O’AM = ∠MDA
不难证明∠O’AM = (∠B-∠C)/2
所以∠MDA =(∠B-∠C)/2
∠ADC = ∠C
∠MDC = ∠MDA+ ∠ADC = ∠C +(∠B-∠C)/2 = (∠B+∠C)/2
………………
………………
还用我再写下去么?