如图.
(1)根据题意可知,
直线BD的方程为 y=tanαx;
当B点为 (p,1) 时,
代入反比例函数 y=√3/p,
得 p=√3;
将B (√3,1) 代入BD的方程 y=tanαx 中,得 1=tanα×√3
所以 α=30°=π/6;
由于ABCD是矩形,则 BD=AC,BO=DO=AO=CO
所以 m=BO=2(假设m是正数).
(2)当m=2时,使ABCD为矩形的B点满足 BO=2,
此时B的坐标(x,y)应满足
①BO=2,即 √(x²+y²)=2
②B点在反比例函数上,即 y=√3/x
③x、y>0
解得 x=1,y=√3,或 x=√3,y=1
可见,在m=2的情况下,共有2个B点使ABCD为矩形,
B1(√3,1),B2(1,√3),
其中B1即题目已给出的B点,B2为另一个满足条件的点.
(3)ABCD不可能是菱形,
因为假如ABCD是菱形,
将会有AC⊥BD,
而AC为x轴,
BD必穿过坐标轴原点,
将会推出BD是y轴,
这与B、D均是反比例函数上的点是相矛盾的,
可见ABCD不可能是菱形.