如图,已知三角形ABC的角ABC点角平分线与角ACB的外角角ACD的平分线交于点P,试探究角P与角A的大小关系.
1个回答

△ABC中,∠A + ∠ABC + ∠ACB = 180°

△PBC中,∠P + ∠PBC + ∠PCB = 180°

∠PBC = ∠ABC/2 (角平分线)

∠PCB = ∠ACB + ∠ACP

= ∠ACB + ∠ACD/2 (角平分线)

= ∠ACB + (∠A + ∠ABC)+/2 (两角和 = 第三角外角)

∠P + ∠PBC + ∠PCB = ∠P + ∠ABC/2 + ∠ACB + (∠A + ∠ABC)/2 = ∠P + ∠ABC + ∠ACB + ∠A/2 = 180° = ∠A + ∠ABC + ∠ACB

∠P = ∠A/2