求证:2(cos θ -sin θ )/(1+sinθ +cosθ)=tan(∏/4- θ /2)-tan(θ /2)
1个回答

看到右边是关于θ/2的,就想着把左边也化为θ/2的.

2(cos θ -sin θ )/(1+sinθ +cosθ)

上面=2((cosθ/2)^2-(sinθ/2)^2-

2(sinθ/2)(cosθ/2))

下面=(cosθ/2)^2+(sinθ/2)^2+

2(sinθ/2)(cosθ/2))

+(cosθ/2)^2-(sinθ/2)^2,

上下除以(cosθ/2)^2

得(1-tan(θ/2)^2-2tan(θ /2))除以

1+tan(θ/2)

而tan(∏/4- θ /2)-tan(θ /2)=

(1-tan(θ/2))/(1+tan(θ/2))+tan(θ/2)

通分得(1-tan(θ/2)^2-2tan(θ /2))除以

1+tan(θ/2)

即左边=右边