若函数f(x)=(k-1)ax-a-x(a>0,a≠1)在R上既是奇函数,又是减函数,则g(x)=loga(x+k)的图
1个回答

解题思路:根据函数是一个奇函数,函数在原点出有定义,得到函数的图象一定过原点,求出k的值,根据函数是一个减函数,看出底数的范围,得到结果.

∵函数f(x)=(k-1)ax-a-x(a>0,a≠1)在R上是奇函数,

∴f(0)=0

∴k=2,

又∵f(x)=ax-a-x为减函数,

所以1>a>0,

所以g(x)=loga(x+2),

定义域为x>-2,且递减,

故答案为:①.

点评:

本题考点: 对数函数的图像与性质;函数奇偶性的性质;函数的图象;指数函数的图像与性质.

考点点评: 本题考查函数奇偶性和单调性,即对数函数的性质,本题解题的关键是看出题目中所出现的两个函数性质的应用.