∵1+1/n²+1/(n+1)²
= 1+ (1/n² +1/(n+1)²)
=1+ ((n+1)²+n²)/(n²(n+1)²)
=((n+1)²+n²+n²(n+1)²)/(n²(n+1)²)
=(((n+1)-n)²+2n(n+1)+n²(n+1))/(n²(n+1)²)
=(1²+2n(n+1)+n²(n+1)²)/(n²(n+1)²)
=(n(n+1)+1)²/(n²(n+1)²)
再开根,
原式=(n(n+1)+1)/(n(n+1))
=1 + 1/(n(n+1))
=1+1/n -1/(n+1)