根号1+1/n²+1/(n+1)²=?
2个回答

∵1+1/n²+1/(n+1)²

= 1+ (1/n² +1/(n+1)²)

=1+ ((n+1)²+n²)/(n²(n+1)²)

=((n+1)²+n²+n²(n+1)²)/(n²(n+1)²)

=(((n+1)-n)²+2n(n+1)+n²(n+1))/(n²(n+1)²)

=(1²+2n(n+1)+n²(n+1)²)/(n²(n+1)²)

=(n(n+1)+1)²/(n²(n+1)²)

再开根,

原式=(n(n+1)+1)/(n(n+1))

=1 + 1/(n(n+1))

=1+1/n -1/(n+1)