如图,在平行四边形ABCD中,点E是BC的中点,AB的延长线与DE的延长线交于点F.
2个回答

解题思路:(1)利用平行四边形的对边相等和三角形全等的性质可找出图中与线段CD相等的线段.

(2)利用平行四边形的性质得∠F=∠CDE,根据AAS证明△BEF≌△CED,根据全等三角形的对应边相等,得DE=FE,由对角线互相平分的四边形是平行四边形证得四边形DBFC为平行四边形.

(1)AB=CD,BF=CD;

(2)四边形DBFC为平行四边形,理由如下:

∵四边形ABCD是平行四边形,

∴AB∥CD即AF∥CD.

∴∠F=∠CDE

∵BE=CE,∠BEF=∠CED

∴△BEF≌△CED

∴DE=FE

∴四边形DBFC为平行四边形.

点评:

本题考点: 平行四边形的判定与性质;全等三角形的判定与性质.

考点点评: 本题考查的知识点为:对角线互相平分的四边形是平行四边形.