设函数f(x)=(sinwx+coswx)²+2cos²wx(w>0)的最小正周期为2π/3,求:
收藏:
0
点赞数:
0
评论数:
0
1个回答

f(x)=(sinwx+coswx)²+2cos²wx

=[(根号2)*cos(wx-π/4)]²+2cos²wx

=2*[cos²(wx-π/4)+cos²wx]

=cos(2wx-π/2)+cos2wx+2

=sin2wx+cos2wx+2

=(根号2)sin(2wx+π/4)+2

(1)最小正周期T=2π/2w=2π/3,w=3/2

(2)g(x)=(根号2)sin[3(x-π/2)+π/4]+2

=(根号2)sin(3x-5π/4)+2

2kπ-π/2≤3x-5π/4≤2kπ+π/2

解得y=g(x)的单调增区间为[2kπ/3+π/4,2kπ/3+7π/12],k取整数的每一个闭区间

点赞数:
0
评论数:
0
关注公众号
一起学习,一起涨知识