如图,∠ABC=∠ACB,BE平分∠ABC,CF平分∠ACB,∠EBD=∠D,试猜想CF与DE的关系,并说明理由.
2个回答

解题思路:先根据∠ABC=∠ACB,BE平分∠ABC,CF平分∠ACB,可求出∠EBD=∠BCF,再根据∠EBD=∠D可求出∠BCF=∠D,进而可求出CF∥DE.

CF∥DE.理由如下:

∵∠ABC=∠ACB,BE平分∠ABC,CF平分∠ACB,

∴∠EBD=∠BCF,

∵∠EBD=∠D,

∴∠BCF=∠D,

∴CF∥DE.

点评:

本题考点: 平行线的判定;角平分线的定义.

考点点评: 本题考查了角平分线的性质及平行线的判定定理,比较简单.