在菱形ABCD的边上,依次截取点E、F、G、H,使AE=AH=CF=CG.
1个回答

(1)

设∠AEH=X ∠BEF=Y

AB=BC=CD=DA

AE=AH=CF=CG

所以 BE=BF=GC=CH

∠AEH=∠AHE =∠CFG=∠CGF=X

∠BEF=∠EFB=∠CGH=∠CHG=Y

菱形的4个内角和为360°

2(180°-2Y+180°-2Y)=360°

X+Y=90°

∠FEH=∠EHG=∠HGF=∠GFE=90°

所以四边形EFGH为矩形

(2)

由题一知∠AEH=∠AHE =∠CFG=∠CGF

∠A=120°

可得∠AEH=∠AHE =∠CFG=∠CGF=30°

∠BEF=∠EFB=∠CGH=∠CHG=60°

又AE=x

EH=X√ 3 BE=EF=1-X

Y=(1-X)*X√ 3

(3)

当EH=X√ 3 =BE=EF=1-X时,四边形EFGH为正方形

X=1/(1+√ 3 )