(1)
设∠AEH=X ∠BEF=Y
AB=BC=CD=DA
AE=AH=CF=CG
所以 BE=BF=GC=CH
∠AEH=∠AHE =∠CFG=∠CGF=X
∠BEF=∠EFB=∠CGH=∠CHG=Y
菱形的4个内角和为360°
2(180°-2Y+180°-2Y)=360°
X+Y=90°
∠FEH=∠EHG=∠HGF=∠GFE=90°
所以四边形EFGH为矩形
(2)
由题一知∠AEH=∠AHE =∠CFG=∠CGF
∠A=120°
可得∠AEH=∠AHE =∠CFG=∠CGF=30°
∠BEF=∠EFB=∠CGH=∠CHG=60°
又AE=x
EH=X√ 3 BE=EF=1-X
Y=(1-X)*X√ 3
(3)
当EH=X√ 3 =BE=EF=1-X时,四边形EFGH为正方形
X=1/(1+√ 3 )