let g(x) = f(x) - λξ,那么g(a) = λ(b-a),g(b) = λ(a-b),so g(a)= - g(b),
存在ξ∈(a,b),使得g(ξ)=0,that is ,f(ξ)=λξ.
let h(x) = f(x)/λ,h(a) = b>h(b) = a,h(ξ)=ξ∈(a,b).
h‘(α)= [h(ξ)-h(a)]/(ξ-a) =(ξ-h(a))/(ξ-a) ,
h’(β)= [h(ξ)-h(b)]/(b-ξ) = (ξ-a)/(b-ξ),
so f‘(α)*f’(β)=λ²
.