1.证明(cosA)^2+(cosB)^2+(cosC)^2-1=-2cosAcosBcosC (A+B+C=180度)
1个回答

1证明:

(cosA)^2+(cosB)^2+(cosC)^2-1

=(1+cos2A)/2+(1+cos2B)/2+(cosC)^2-1

=1/2(cos2A+cos2B)+(cosC)^2

=1/2×2cos(A+B)cos(A-B)+(cosC)^2

=cos(180°-C)cos(A-B)+(cosC)^2

=(cosC)^2-cosCcos(A-B)

=cosC(cosC-cos(A-B))

=cosC×(-2sin(C+A-B)/2)sin(C+B-A)/2))

=cosC×(-2sin((180°-2B)/2)sin((180°-2A)/2))

=cosC×(-2sin(90°-B)sin(90°-A))

=-2cosAcosBcosC

2sin2x+sin3x=0

得sin2x=-sin3x

故有:2x=3x+kπ (k是整数)

解得:x=-kπ

解得:x=0或π