1证明:
(cosA)^2+(cosB)^2+(cosC)^2-1
=(1+cos2A)/2+(1+cos2B)/2+(cosC)^2-1
=1/2(cos2A+cos2B)+(cosC)^2
=1/2×2cos(A+B)cos(A-B)+(cosC)^2
=cos(180°-C)cos(A-B)+(cosC)^2
=(cosC)^2-cosCcos(A-B)
=cosC(cosC-cos(A-B))
=cosC×(-2sin(C+A-B)/2)sin(C+B-A)/2))
=cosC×(-2sin((180°-2B)/2)sin((180°-2A)/2))
=cosC×(-2sin(90°-B)sin(90°-A))
=-2cosAcosBcosC
2sin2x+sin3x=0
得sin2x=-sin3x
故有:2x=3x+kπ (k是整数)
解得:x=-kπ
解得:x=0或π