连接DE,根据三角形内角和定理可得
∴∠DBE=180°-(∠BDE+∠BED) (1)
∴∠DAE=180°-(∠ADE+∠AED)=180°-(∠ADB+∠AEB+∠BDE+∠BED) (2)
式1-式2
∠DBE-∠DAE=∠ADB+∠AEB=b-a
又∵DC平分∠ADB,EC平分∠AEB
∴∠CDB=∠ADB/2 ∠CEB=∠AEB/2
∴∠CDB+∠CEB=(∠ADB+∠AEB)/ 2=(b-a)/ 2
∴∠DCE=180°-(∠CDE+∠CED)
=180°-(∠CDB+∠CEB+∠BDE+∠BED)
=180°-(∠BDE+∠BED) -(∠CDB+∠CEB)
= ∠DBE- (∠CDB+∠CEB)
=b-(b-a)/2
=(b+a)/2