如图,连结EG,BG.
(1)∵BG是△BCD的中线,可得
BG =
1
2 (
BC +
BD )
∴
EG =
EB +
BG =
EB +
1
2 (
BC +
BD )
∵
BF =
1
2
BC ,
EH =
1
2
BD
∴
EG =
EB +
BF +
EH =
EF +
EH ,
根据向量共面的充要条件,得
可得E,F,G,H四点共面.
(2)∵
EH =
EA +
AH ,
EH =
EG +
GH
∴
BD =
BA +
AD =2
EA +2
AH =2
EH =2(
EG +
GH )=2
EG +2
GH ,
结合
EG ,
GH 不共线,可得
BD 与
EG ,
GH 共面.
又∵BD?面EFGH,∴BD ∥ 面EFGH.