∫e^(-x^2)dx=√π,用二重积分怎么证明
2个回答

∫e^(-x^2)dx=∫e^(-y^2)dy

而∫e^(-x^2)dx*∫e^(-y^2)dy

=∫∫e^(-y^2)*e^(-x^2)dxdy

=∫∫e^(-x^2-y^2)dxdy

然后是用极坐标换元,x=rcosa,y=rsina r属于[0,无穷大),a属于[0,2π]

=∫∫re^(-r^2)drda (r属于[0,无穷大),a属于[0,2π])

=∫(0,2π)da*∫re^(-r^2)dr r属于[0,无穷大),

=2π* 1/2*∫e^(-r^2)dr^2 r属于[0,无穷大),

=π* ∫-de^(-r^2) r属于[0,无穷大),

=π*[e^(-0^2)-lime^(-r^2)] r→无穷大

=π*(1-0)

∫e^(-x^2)dx*∫e^(-y^2)dy=π=[∫e^(-x^2)dx]^2

易知∫e^(-x^2)dx>0

所以∫e^(-x^2)dx=√π