计算二重积分:∫[0,1]dx∫[0,x^½]e^(-y²/2)dy
收藏:
0
点赞数:
0
评论数:
0
2个回答

原式=∫dy∫e^(-y²/2)dx (作积分顺序变换)

=∫(1-y²)e^(-y²/2)dy

=∫e^(-y²/2)dy-∫y²e^(-y²/2)dy

=∫e^(-y²/2)dy-{[-ye^(-y²/2)]│+∫e^(-y²/2)dy} (应用分部积分法)

=∫e^(-y²/2)dy-[-e^(-1/2)+∫e^(-y²/2)dy]

=∫e^(-y²/2)dy+e^(-1/2)-∫e^(-y²/2)dy

=e^(-1/2)

=1/√e.

点赞数:
0
评论数:
0
关注公众号
一起学习,一起涨知识