如图,在四棱锥P-ABCD中,底面ABCD是矩形,且PA⊥平面ABCD,AP=AB=2,BC=2倍根号2,E,F分别为A
3个回答

∵PA⊥平面ABCD,AB是斜线PB的射影,

BC⊥AB,

∴根据三垂线定理,BC⊥PB,

∴△PBC是RT△,

∵F是RT△PBC斜边的中点,

∴BF=PC/2,

根据勾股定理.PC^2=PA^2+AC^2,

AC^2=AB^2+BC^2,

AC=2√3,

PC=4,

BF=2,

∵PA=PB=2,PA⊥PB,

∴△PAB是等腰RT△,

PB=√2AB=2√2,

PB=BC=2√2,

∴△PBC是等腰RT△,

BF⊥PC,

PE=√6,CE=√6,

PE=CE,

∴△PEC是等腰△,

∵F是PC中点,

∴EF⊥PC,(等腰△三线合一),

∵EF∩BF=F,

∴PC⊥平面BEF.

2、设底对角线AC∩BD=O,

连结FO和EO,延长EO交BC于M,连结FM,

∵FO是△PAC的中位线,

∴EF//PA,

∴EF⊥平面ABCD,

∵EM//AB,

PA∩AB=A,

EO∩EM=O,

∴平面PAB//平面EFM,

∴平面EFM和平面EFB所成二面角就是平面BEF与平面BAP夹角,

∵BM⊥EM,BM⊥FO,

∴BM⊥平面EFM,

△EFM是△EFB在平面EFM上的投影,

设二面角B-EF-M的平面角为θ,

S△EFM=S△BEF*cosθ,

EF=√(PE^2-PF^2)=√(6-4)=√2,

∵EF^2+BF^2=BE^2=6,

∴△BEF是RT△,

S△EFB=EF*BF/2=√2*2/2=√2,

S△EMF=EM*FO/2=2*1/2=1,

∴cosθ=1/√2=√2/2,

θ=45°,

∴平面BEF与平面BAP夹角为45度.