解题思路:由f(x)-f(x-5)=0可判断出函数的周期性,由x∈(-1,4]时函数的解析式,可以求出一个周期内函数的零点个数,进而可得函数f(x)在[0,2013]上的零点个数
∵f(x)-f(x-5)=0
∴f(x)=f(x-5)
∴f(x)是以5为周期的周期函数,
又∵f(x)=x2-2x在x∈(-1,4]区间内有3个零点,
∴f(x)在任意周期上都有3个零点,
∵x∈(3,2013]上包含402个周期,
又∵x∈[0,3]时也存在一个零点x=2,
故零点数为3×402+1=1207.
故答案为:1207
点评:
本题考点: 函数的周期性;根的存在性及根的个数判断.
考点点评: 本题考查的知识点是根的存在性及根的个数判断,其中根据已知分析出函数的周期性是解答的关键.