计算下列n(>=2)阶方阵的行列式
1个回答

1. a+1 -1 1 -1 a -1 1 -1 1 -1 1 -1

A= 1 a-1 1 -1 = a a-1 1 -1 = a× 1 a-1 1 -1

1 -1 a+1 -1 a -1 a+1 -1 1 -1 a+1 -1

1 -1 1 a-1 a -1 1 a-1 1 -1 1 a+1

1 0 0 0

=a× 1 a 0 0 = a×a³ = a^4

1 0 a 0

1 0 0 a

2. x a . a x+(n-1)a a ... a 1 a ... a

An= a x . a = x+(n-1)a x ... a = [x+(n-1)a]× 1 x ... a

. . .

a a . x x+(n-1)a a ... x 1 a ... x

1 0 ... 0

=[x+(n-1)a]× 1 x-a 0 = [x+(n-1)a]×(x-a)^(n-1)

1

1 0 ... x-a

3.

an bn

. .

. .

. .

A2n = a1b1

c1d1

. . ,其中未写出的元素均为零

. .

. .

cn dn

Ann An2n

= A2nn A2n2n =|Ann|×|A2n2n|-|An2n|×|A2nn|

=a1···an×d1···dn-b1···bn×c1···cn

4.最后一行倒数第二个不应该是xn-1吧,应该是xn

a1 x1

x2 a2

. .

. .

xn an

a2 x2 a2

x3

=a1× +(-1)^(n+1)x1 an-1

xn an xn

=a1a2···an+(-1)^(n+1)x1x2···xn

辛苦做完,希望帮助到你,望采纳,谢谢~