已知函数f(x)=2x+k•2-x,k∈R.
1个回答

解题思路:(1)利用函数f(x)=2x+k•2-x为奇函数,建立等式,即可求实数k的值;

(2)对任意的x∈[0,+∞)都有f(x)>2-x成立,即2x+k•2-x>2-x成立,即1-k<22x对任意的x∈[0,+∞)成立,从而可求实数k的取值范围.

(1)∵函数f(x)=2x+k•2-x为奇函数,∴f(-x)=-f(x)

∴2-x+k•2x=-(2x+k•2-x

∴(1+k)+(k+1)22x=0恒成立

∴k=-1

(2)∵对任意的x∈[0,+∞)都有f(x)>2-x成立,

∴2x+k•2-x>2-x成立

∴1-k<22x对任意的x∈[0,+∞)成立

∵y=22x在[0,+∞)上单调递增

∴函数的最小值为1

∴1-k<1

∴k>0

点评:

本题考点: 函数恒成立问题;函数奇偶性的性质.

考点点评: 本题考查函数的奇偶性,考查恒成立问题,解题的关键是利用奇偶性的定义,利用分离参数法求解恒成立问题.