解题思路:根据垂直得出∠AEB=∠ADB=90°,求出∠ABE,求出∠CBE,根据三角形外角性质求出即可.
∵BE⊥AC,AD⊥BC,
∴∠AEB=∠ADB=90°,
∵∠CAB=52°,
∴∠ABE=90°-∠CAB=38°,
∴∠CBE=∠CBA-∠ABE=74°-38°=36°,
∴∠AFB=∠CBE+∠ADB=36°+90°=126°,
故选A.
点评:
本题考点: 三角形内角和定理;三角形的外角性质.
考点点评: 本题考查了垂直定义,三角形内角和定理,三角形外角性质的应用,主要考查学生的推理和计算能力.