用三角比公式化简:sin50'(1+根号3*tan10')
1个回答

由题意得:

方法1:sin50°(1+√3×tan 10°)

=(sin50°cos10°+√3sin50°sin10°)/cos10°

=[sin(60°-10°)cos10°+√3sin(60°-10°)sin10°]/cos10°

=(sin60°cos10°²-cos60°sin10°cos10°+√3sin60°cos10°sin10°-√3cos60°sin10°²)/cos10°

=[√3/2*(cos10°²-sin10°²)+sin10°cos10°]/cos10°

=(√3/2×cos20°+1/2×sin20°)/cos10°

=(sin60°cos20°+cos60°sin20°)/cos10°

=sin80°/cos10°

=1

方法2:sin50°(1+√3tan10°)

=sin50°[1+(√3sin10°/cos10°)]

=sin50°[cos10°+√3sin10°)/cos10°]

=2sin50°[(1/2)cos10°+(√3/2)sin10°)/cos10°]

=2sin50°[cos60cos10°+sin60sin10°)/cos10°]

=2sin50°cos(60°-10°)/cos10 °

=2sin50°cos50°/cos10 °

=sin100°/cos10 °

=cos10°/cos10 °

=1

因此sin50°(1+√3×tan 10°) 的值为1