(1) e² = c²/a² = (a² - c²)/a² = (4 - b²)/4 = 3/4,b = 1
C2为开口向上的抛物线,焦点只能是椭圆的上顶点(0,1),p/2 = 1,p = 2
C2:x² = 4y
(2)F(0,1/2),p/2 = 1/2,p = 1
x² = 2y,y = x²/2
设P(u,u²/2)
y' = x
过点p的切线:y - u²/2 = u(x - u),y = ux - u²/2
代入x²/4 + y²= 1
(4u² + 1)x² - 4u³x + u⁴ - 4 = 0
x₁ + x₂ = 4u³/(4u² + 1)
x₁x₂ = (u⁴ - 4)/(4u² + 1)
y₁,₂ = ux₁,₂ - u²/2
设OA,OB的斜率分别为m,n
mn = -1 = y₁y₂/(x₁x₂)
-x₁x₂ = y₁y₂
-(u⁴ - 4)/(4u² + 1) = (ux₁ - u²/2)(ux₂ - u²/2) = u²x₁x₂ - (u³/2)(x₁ + x₂) + u⁴/4
= u²(u⁴ - 4)/(4u² + 1) - (u³/2)*4u³/(4u² + 1) + u⁴/4
5u⁴ - 16u² - 16 = 0
(5u² + 4)(u² - 4) = 0
u² = 4
u = ±2
P(±2,2)