1³+2³+3³+4³+……+99³+100³=?
2个回答

有个公式

1^3+2^3+3^3+...+n^3=[(1+n)n/2]^2

代入100

[(100+1)*100/2]^2=5050^2=25 502 500

证明1^3+2^3+3^3+...+n^3=(1+2+3+...+n)^2=[n(n+1)/2]^2

n^4-(n-1)^4

=[n^2-(n-1)^2][n^2+(n-1)^2]

=(2n-1)(2n^2-2n+1)

=4n^3-6n^2+4n-1

2^4-1^4=4*2^3-6*2^2+4*2-1

3^4-2^4=4*3^3-6*3^2+4*3-1

4^4-3^4=4*4^3-6*4^2+4*4-1

.

n^4-(n-1)^4=4n^3-6n^2+4n-1

各等式全部相加

n^4-1^4=4*(2^3+3^3+...+n^3)-6*(2^2+3^2+...+n^2)+4(2+3+4+...+n)-(n-1)

n^4-1^4=4*(1^3+2^3+3^3+...+n^3)-6*(1^2+2^2+3^2+...+n^2)+4(1+2+3+4+...+n)-(n-1)-2

n^4-1=4*(1^3+2^3+3^3+...+n^3)-6*n(n+1)(2n+1)/6+4*n(n+1)/2-n-1

n^4-1=4*(1^3+2^3+3^3+...+n^3)-n(n+1)(2n+1)+2n(n+1)-n-1

n^4-1=4*(1^3+2^3+3^3+...+n^3)-n(n+1)(2n+1)+2n(n+1)-n-1

4*(1^3+2^3+3^3+...+n^3)

=n^4-1+n(n+1)(2n+1)-2n(n+1)+n+1

=n^4-1+(n+1)(2n^2-n)+n+1

=n^4-1+(2n^3+n^2-n)+n+1

=n^4+2n^3+n^2

=(n^2+n)^2

=(n(n+1))^2

1^3+2^3+3^3+...+n^3

=[n(n+1)/2]^2